Pengaruh Perbedaan Jenis Garam terhadap Kandungan Metabolit pada Fermentasi Kimchi: Reviu

Fannisa Hafidhia Suryana


Kimchi is a food produced through a traditional fermentation process in vegetables to keep the texture of vegetables crispy and fresh. Compounds produced in kimchi fermentation are mannitol and some sugars such as glucose, sucrose, and maltose. The fermentation used in its manufacture uses Lacto fermentation which involves Lacto Acid Bacteria (LAB). In addition, the addition of salt is done for preservation and to determine the level of mannitol levels. The types of salt used are pure salt and mineral salt. Pure salt contains pure NaCl while mineral salt contains NaCl and other mineral metals such as Ca, Mg, and Mn. The purpose of reviewing this article is to determine the effect of different types of salt on the type of metabolite content in kimchi fermentation. The research method used is the collection of sources and data related to the topics discussed. The applied literature study uses a deductive approach based on sources from journal literature by utilizing search engines on Google Scholar, ACS, ScienceDirect, KoreaScience, PubMed, SpringerLink and supporting literature websites (, The results obtained show that there is an effect of different types of salt on the metabolite content in kimchi which is shown in the data pattern. Conclusion: that the effect of adding pure and mineral salts indicates an increasing ratio of Latilactobacillus bacteria resulting in metabolites with different patterns.

Full Text:



Bautista-Gallego, J., Rantsiou, K., Garrido-Fernández, A., Cocolin, L., & Arroyo-López, F. N. (2013). Salt Reduction in Vegetable Fermentation: Reality or Desire? Journal of Food Science, 78(8), R1095–R1100.

Carvalheiro, F., Moniz, P., Duarte, L. C., Esteves, M. P., & Gírio, F. M. (2011). Mannitol production by lactic acid bacteria grown in supplemented carob syrup. Journal of Industrial Microbiology and Biotechnology, 38(1), 221–227.

Chang, J. Y., & Chang, H. C. (2010). Improvements in the quality and shelf life of kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. Journal of Food Science, 75(2), M103-10.

Chang, J. Y., Kim, I., & Chang, H. (2014). Effect of Solar Salt on Kimchi Fermentation during Long-term Storage. Korean Journal of Food Science and Technology, 46, 456–464.

Cheigh, H., Park, K., & Lee, C. Y. (1994). Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Critical Reviews in Food Science and Nutrition, 34(2), 175–203.

Choi, Y.-J., Lee, H.-W., Yang, J.-H., Hong, S.-W., Park, S.-H., & Lee, M.-A. (2018). Changes in quality properties of kimchi based on the nitrogen content of fermented anchovy sauce, Myeolchi Aekjeot, during fermentation. Food Science and Biotechnology, 27(4), 1145–1155.

Choi, Y.-J., Yong, S., Lee, M. J., Park, S. J., Yun, Y.-R., Park, S.-H., & Lee, M.-A. (2019). Changes in volatile and non-volatile compounds of model kimchi through fermentation by lactic acid bacteria. LWT, 105, 118–126.

Di Cagno, R., Filannino, P., & Gobbetti, M. (2016). Fermented Foods: Fermented Vegetables and Other Products (B. Caballero, P. M. Finglas, & F. B. T.-E. of F. and H. Toldrá (eds.); pp. 668–674). Academic Press.

Gao, T.-C., Cho, J.-Y., Feng, L.-Y., Chanmuang, S., Park, S.-Y., Ham, K.-S., Auh, C.-K., & Pai, T.-K. (2014). Mineral-rich solar sea salt generates less oxidative stress in rats than mineral-deficient salt. Food Science and Biotechnology, 23(3), 951–956.

Hong, Y., Yang, H.-S., & Chang, H.-C. (2013). Comparison of Bacterial Community Changes in Fermenting Kimchi at Two Different Temperatures Using a Denaturing Gradient Gel Electrophoresis Analysis. Journal of Microbiology and Biotechnology, 23(1), 76–84.

Huh, Y.-J., Cho, Y.-J., Kim, J.-K., & Park, K.-H. (2003). Effects of Radish Root Cultivars on the Dongchimi Fermentation. Korean Journal of Food Science and Technology, 35.

Jae-Ho Ha, Woodrck S. Hawer, Young-Jin Kim, Y.-J. N. (1989). Changes of Free Sugars in Kimchi During Fermentation. In Korean J. Food Sci. Technol. (Vol. 21, Issue 5, pp. 633–638).

Jung, H.-J., Hong, Y., Yang, H.-S., Chang, H.-C., & Kim, H.-Y. (2012). Distribution of lactic acid bacteria in garlic (Allium sativum) and green onion (Allium fistulosum) using SDS-PAGE whole cell protein pattern comparison and 16S rRNA gene sequence analysis. Food Science and Biotechnology, 21(5), 1457–1462.

Jung, J. Y., Lee, S. H., Lee, H. J., Seo, H.-Y., Park, W.-S., & Jeon, C. O. (2012). Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology, 153(3), 378–387.

Jung, S.-J., Chae, S.-W., & Shin, D.-H. (2022). Fermented Foods of Korea and Their Functionalities. In Fermentation (Vol. 8, Issue 11).

Kim, D.-M., & Kim, K.-H. (2014). Growth of Lactic Acid Bacteria and Quality Characteristics of Baechu Kimchi Prepared with Various Salts and Concentration. Journal of the Korean Society of Food Culture, 29, 286–297.

Lee, C.-H. (1986). Kimchi; Korean Fermented Vegetable Foods. In Korean Journal of Dietary Culture (Vol. 1, Issue 4, pp. 395–402).

Lee, D., Kim, S., Cho, J., & Kim, J. (2008). Microbial population dynamics and temperature changes during fermentation of kimjang kimchi. The Journal of Microbiology, 46(5), 590–593.

Lee, J.-J., Choi, Y.-J., Lee, M. J., Park, S. J., Oh, S. J., Yun, Y.-R., Min, S. G., Seo, H.-Y., Park, S.-H., & Lee, M.-A. (2020). Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation. Food Research International, 136, 109591.

Lee, M. A., Choi, Y. J., Kim, Y. S., Chon, S. Y., Chung, Y. B., Park, S. H., Yun, Y. R., Min, S. G., Yang, H. C., & Seo, H. Y. (2022). Effects of salt type on the metabolites and microbial community in kimchi fermentation. Heliyon, 8(11), e11360.

Lee, S., Kim, D.-S., Son, Y., Le, H.-G., Jo, S. W., Lee, J., Song, Y., & Kim, H.-J. (2021). Effects of Salt Treatment Time on the Metabolites, Microbial Composition, and Quality Characteristics of the Soy Sauce Moromi Extract. Foods (Basel, Switzerland), 11(1).

Seon-Jae, K., Hag-Lyeol, K., & Kyung-Sik, H. (2005). Characterization of Kimchi Fermentation Prepared with Various Salts. Korean Journal of Food Preservation, 12.

Song, H., Lee, S. H., Ahn, S., Kim, J. Y., Rhee, J.-K., & Roh, S. W. (2021). Effects of the main ingredients of the fermented food, kimchi, on bacterial composition and metabolite profile. Food Research International, 149, 110668.

Song, H. S., Whon, T. W., Kim, J., Lee, S. H., Kim, J. Y., Kim, Y. B., Choi, H.-J., Rhee, J.-K., & Roh, S. W. (2020). Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation. Food Chemistry, 318, 126481.

Tamang, J. P., Watanabe, K., & Holzapfel, W. H. (2016). Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Frontiers in Microbiology, 7, 377.

Wisselink, H. W., Weusthuis, R. A., Eggink, G., Hugenholtz, J., & Grobben, G. J. (2002). Mannitol production by lactic acid bacteria: a review. International Dairy Journal, 12(2), 151–161.



  • There are currently no refbacks.

View Integrasi Stats